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Abstract. We study the concept of projectability by the Legendre transformation FL : TQ + 

T*Q induced by a singular Lagrangian, and the restrictions on this concept when submani- 
folds of TQ are considered. The FL projectability of the characteristic vector fields and 
constraint functions relative to such a submanifold is analysed, thus giving a way of 
characterising the submanifolds of TQ according to their behaviour under FL, by means 
of the study of the tangency of the fields belonging to ker FL, .  The applicatioi 
of the results to the theory of constrained systems is discussed. 

1. Introduction 

The study of constrained dynamical systems has been a matter of increasing 

of some 

nterest 
in recent years. Many authors have contributed to the development of the Hamiltonian 
formalism for such systems [ 1-31. Nevertheless, some of the most significant advances 
have been made recently in the analysis of the Lagrangian formalism, as well as in 
the equivalence between both formulations [4-71. The essential feature to be pointed 
out in this formalism is the singular character of the Lagrangian function. 

One of the main consequences of this property of the Lagrangian is that the Legendre 
transformation (fibre derivative of the Lagrangian, FL, in geometrical language [ 81) 
is not a diffeomorphism. In these cases, to prove the equivalence with the corresponding 
Hamiltonian formulation is not an  easy task, but this problem has already been solved 
[4,7]. Another question is that some Lagrangian p-forms or vector fields have no 
Hamiltonian counterpart. This ‘ F L  projectability’ question arises, for instance, when 
constraint algorithms for the Lagrangian equations of motion are studied. In these 
cases, some constraints having no Hamiltonian counterpart appear [7]. Although the 
mathematical origin of this kind of constraint function is known [9], the role they play 
in the geometrical structure of the Lagrangian systems is still under investigation [lo]. 

The aim of this paper is to contribute to this investigation, by studying the projecta- 
bility of tensorial objects by FL. In order to apply it to the constraint algorithms, we 
pay special attention to investigate it in relation to submanifolds of the tangent bundle 
TQ, where the Lagrangian formalism is developed ( 9  2). We also study the behaviour 
of typical vector fields in these submanifolds under the action of FL, ( 0  3), as well as 
the geometrical meaning of the presence of non-FL-projectable constraints ( 0  4). 
Finally, the constraint algorithms are studied in this framework ( 9  5). 

0305-4470/87/155213 + 11$02.50 @ 1987 IOP Publishing Ltd 5113 
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2. The concept of projectability by the Legendre transformation 

The Lagrangian formulation of mechanics is performed geometrically in the tangent 
bundle TQ of a differential manifold Q (configuration space). Given a function 
L E  A'( TQ) we construct the Lagrange 2-form w L  E A'( TQ) and the energy function 
E L  E A"( TQ), which allows us to write the Lagrangian equations of motion in the form 

i(XL)wL - dEL = O  (1) 

(i(XL)wL denotes the contraction of the vector field XL with the form w L ) .  The function 
L is called the Lagrangian function and (TQ, w L ,  EL) is its associated Lagrangian 
system [ 11, 121 (the only condition for L to be a good function to describe the dynamics 
is that rank w L  be constant on TQ, locally at least, and  we assume that this is so). 

It is well known that, given a Lagrangian function L, the connection between the 
Lagrangian and Hamiltonian formalisms is performed by the fibre derivative of L, 
F L :  TQ + T*Q, which is usually called the Legendre transformation. We can also note 
that the only case in which FL is a local or global diffeomorphism corresponds to the 
so-called regular or hyperregular Lagrangians ( w L  is a symplectic form), and the fact 
that FL is not a diffeomorphism is equivalent to L being a degenerate or singular 
Lagrangian function and w L  being presymplectic. In this last case we will assume FL 
to be a submersion from TQ onto its image and the fibres FL-'(FL(x)), Vx E TQ, to 
be connected submanifolds of TQ. Systems verifying these conditions are called almost 
Lagrangian systems [4], and  it also can be proved that these assumptions are sufficient 
conditions for a degenerate Lagrangian system to have an equivalent Hamiltonian 
formulation [4]. 

When we deal with regular Lagrangian systems, FL is a diffeomorphism and so 
are the induced maps FL,  and FL*; therefore every vector field or p-form in TQ has 
a similar counterpart in T*Q. If the Lagrangian system is singular this is not always 
true because FL is not a diffeomorphism. Locally, this means that it is not possible 
to isolate all the coordinates (U') of a local chart in TQ as functions of the natural 
symplectic coordinates ( ql, p I )  of T*Q. Therefore, any magnitude in TQ having explicit 
dependence on these coordinates does not have a canonical expression in T*Q. Due 
to this, we make the following definition. 

Dejnition 2.1. ( a )  A function f~ A"( TQ) (resp a differential p-form a E A"( TQ)) is 
said to be FL projectable iff 3 f ' ~  A"( T*Q)  such that F L * f ' = f  (resp 3 a ' ~  A"( T * Q )  
such that FL*a'= a). 

( b )  A vector field X E 2'( TQ) is said to be FL projectable iff ~ X ' E  2?( T*Q)  such 
that FL,X = X'. This is equivalent to the following statement: ~ X ' E  E( T*Q)  such 
that X(FL*f') = FL*(X'(f')), V ~ E  A"(T*Q); and then X ' =  FLAX. 

Notice that definition ( b )  is also equivalent to demanding that for every FL-projectable 
functionfor p-form a, X ( f )  and f ( X ) a  (Lie derivative) are a FL-projectable function 
or p-form, respectively. We introduce the notation A'( TQ)FL,  A"( TQ)FL and 2'( 
to denote the sets of FL-projectable functions, p-forms and vector fields, respectively. 

It is also easy to prove that if X I ,  Xz E a"( T Q ) F L ,  then [ X I ,  X,] E E( and 

Consider now the submanifold MO FL( TQ)  (which in the Hamiltonian formalism 
is called the primary constraint submanifold) and its embedding jh:  M O -  T*Q. Let 
FL": TQ-. MO be the submersion implicitly defined by FL = j h o  FL". Then, if 

FL*[XI 9 XI1 = [FL*XI f FL*X*I. 
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CO( T*Q, MO) denotes the ideal of functions in T*Q vanishing on MO, since FL*f = 
FL$jA*f, Vf E A'( T*Q),  it is evident that FL*f = 0 if and only if Y E  CO( T*Q, MO). 
Hence, V X  E %( TQ)FL and VC'E CO( T*Q, MO), we have 

O =  X(FL*L') = FL*(LL*X(''))  = FL$JA*(X'({'))GjA*(X'(l')) = O  

and so X ' E  %(MO) = { Y ' E  E( T*Q) tangent to MO}. Thus it is easy to prove the 
following. 

Proposition 2.2. ( i ) f E  A'( T Q ) F L  if and only if 3 f & ~  Ao(Mo) such tha t f=  FL$f b.  Then 
anyf = f b +  S ' E  A'( T*Q) (wherefhis an extension offo to T*Q and C ' E  CO( T*Q, MO)) 
verifies FL*f =f: 

(ii) X E  2?(TQ)FL if and only if ~ X A E  %(MO) such that FLo,X = X A  or, 
equivalently, ~ X A E  %(MO) such that X(FL$fA)  = FL,* ( X b ( f b ) ) ,  V f b ~  Ao(Mo) (and 
then X b  = FLo,X) .  

A characterisation of the vector fields belonging to ker FL, is performed by means of 
the FL-projectable functions, by saying that r E  ker FL, if and only if r (f)  =0,  
V ~ E  A'( T Q ) F L .  Nevertheless, it is more interesting in the converse sense, i.e. to check 
the character in relation to the FL projectability of functions, p-forms and vector fields. 
Thus, taking into account the comments in the appendix and known results from the 
theory of reduction [8,13] one can prove the following. 

Theorem 2.3. ( i )  f~ A'( TQ)FL (resp a E A"( T Q ) F L )  if and only if f (resp a )  is T~ 
projectable or, equivalently, r(f) = 0 (resp Z ( r ) a  = 0), VT E ker FL,. 

(ii) X E % ( T Q ) F ~  if and only if X is 70 projectable or, equivalently, [r, X ] E  
ker FL, , VT E ker FL, . 

An interesting property arising from the last result is that one can also find a local 
basis of E(TQ) made up of vector fields (r,, Y,), where (r,) is a local basis of 
ker FL, and ( Y,) E 2?( TQ)FL (and hence ( T ~ *  Y,)  is a local basis of %(Yo) on its turn). 
Therefore, any vector field X E E( TQ) may be written as X =f"r, +f" Y, with f+, 
f" E A'( TQ)FL and the necessary and sufficient condition for X E E( T Q ) F L  is f" E 
A"( TQ) FL since 

Since we have in mind applications to the constraint theory, we consider now a 
submanifold j s  : S L) TQ and Ms = FL( S ) .  An obvious extension of the concept of FL 
projectability may be given as follows (see the appendix for notation). 

Dejnition 2.4. ( a )  A function fs E AO(S) (resp a p-form as E A p ( S ) )  is said to be FLs 
projectable iff 3fk E A'( M s )  such that FLgfk =fs (resp 3a$ E A"( M s )  such that 
FLgak = as).  A function f~ A'( TQ) (resp a p-form a E Ap( TO))  is said to be weakly 
FL projectable relative to S iff its specialisation in S is FLs projectable, i.e. 3 f ' ~  
A'( T*Q) such that FLgj$*f '= j f f  (resp 3 a ' ~  A p (  T*Q) such that FLgj$*a', = j f a ) .  

( 6 )  A vector field X s  E E(S) is said to be FLs projectable iff ~ X $ E  E(&) such 
that FLs*Xs = Xi or, equivalently, iff 3 X k  E 2'(Ms) such that X ( F L $ f ' $ )  = 
F L Z ( X $ ( f $ ) ) ,  V f $  E A'( Ms), and then X k  = FLs,X. A vector field X E $E'( TQ) is said 
to be weakly FL projectable relative to S iff 

(i)  X E % ( S )  (%(S)  denotes the set of vector fields of %( TQ) which are tangent 
to S, satisfying Js,E(S) = %(S)ls), and 
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(ii) the vector field Xs€2?(S) such that js*Xs=Xls, is FLs projectable or, 
equivalently, iff ~ X ’ E  X ( M S )  such that 

j t (X(FL*f) )  =jzFL*(X’(f))  = FL:jj;.*(X’(f)) Vf E A’( T*Q). 

We will denote by A’(S),=L, Ap(S)FL and 2?( S)FL the sets of FL,-projectable functions, 
p-forms and vector fields, respectively, and A’( TQ, S),, Ap( TQ, S ) ,  and %( TQ, S ) ,  
the sets of those that are weakly FL projectable relative to S. 

Some aspects to be pointed out are the following. First, the concept of FL 
projectability is recovered as a particular case of the preceding one by making S = TQ. 
Second, it is evident that %( TQ, S ) F L  2 %( T Q ) F L  n X ( S ) ,  whereas every FL-projectable 
function or p-form is also weakly FL projectable relative to any S -  TQ. Note that 
the converse is not true because if fs E A’((S), and fs E A”( TQ, S ) F L  is an extension 
of fs in TQ, it suffices to take f = f s + A ” l p ,  with 5, E CO( TQ, S )  and A ”  e A”( T Q ) F L  

arbitrary, to obtain a weakly FL-projectable but not FL,-projectable function. Finally, 
notice that % ( S ) F L  is closed under the Lie bracket and 

FLs*[XSI 9 XS~I=[FLS*XSI 3 FLs*XS~I VXsi ,  xs2~ a(s>FL. 
Vector fields in TQ and T*Q can be classified as follows: 

In order to check the character of the tensorial objects in relation to their FLs 
projectability and weakly FL projectability, we generalise theorem 2.3. Thus, taking 
into account the comments in paragraphs ( a )  and ( b )  of the appendix, we claim the 
following. 

Theorem 2.5. Let S be a submanifold of TQ such that kerFL,nX(S)#{O} (and 
dim(ker FL, n X ( S ) ) ,  = constant, Vx E TQ). Then 

(i) the necessary and sufficient condition forfs E A’(S)FL is thatf, be 7, projectable, 
i.e. Ts(fs) = 0 (resp as E A P ( S ) F L a L ( T S ) a S  = O), VTs E ker FLs*. As a consequence, 
f~ A’( TQ, S ) F L  if and only if jS(r ( f ) )  = 0 (resp a E A”( TQ, S ) F L e j : . 2 ( T ) a  = 0), 
VT E ker FL, = ker FL, n X(S)), and 

( i i )  the necessary and sufficient condition for X s  E 2?(S)FL is that Xs be T~ project- 
able, i.e. [T,, Xs] E ker FLs*. As a consequence, if X E %( TQ), X E %( TQ, S ) F L  if and 
only if X E X ( S )  and [T, XI E ker FL,,  VT E ker FL,. (Notice the particular case in 
which ker FL, c b(S).) 

Observe that, if kef FL, nX(S)  = 0, then the projection T~ is the identity and every 
object is FLs projectable (see the appendix). 

Some important examples of FL-projectable objects are the Lagrange form w L  and 
the energy function EL,  because wI. = FL*R and EL = FL*h, where R E  A’( T*Q) is the 
natural symplectic form in T*Q and h E A’( T*Q) is the Hamiltonian function (which 
always exists for almost regular Lagrangian systems [4]). 
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3. On the FL projectability of distinguished vector fields in a submanifold S -  TQ 

If S is a submanifold of TQ, it is obvious that Ms FL(S) is submanifold of MO- T,Q. 
Then CO( T*Q, MO) c CO( T*Q, M s ) .  We call the elements of CO( T*Q, MO) primary 
constraints and the rest of the elements of CO( T*Q, M s )  secondary constraints. 

Now we shall introduce some notation based on [4,8, 141. Let ( P ,  w )  be a symplectic 
or presymplectic manifold a n d j  : S -  P a submanifold. %(S)' denotes the set of vector 
fields in P whose restrictions on S take values in the orthogonal complement TS' of 
T/'(TS) in T(P),  i.e. 

%(S)'={ZE % ( P ) / j * i ( Z ) w  =O}. 

If ws = j q w ,  ker os E %( P )  is made up of the extensions in P of the vector fields 
belonging to ker os c % ( S ) ,  and we have ker os = %( S)' n X ( S ) .  Putting these con- 
cepts into the present context and taking into account that w L  = FL*R, a simple 
computation allows us to prove the following results. 

Proposition 3.1. Let (TQ, w L ,  E L )  be an almost regular system and j s :  S -  TQ a 
submanifold such that ker FL, n X ( S )  # (0). Then 

(i)  ker FL, c %(S)',  in particular, ker FL, c ker wL = %( TO)'-, 
(ii) ker FL, n X ( S )  = ker wLs (with wLs = j $ w L ) ,  and 
(i i i )  [ker FLs*, % ( S ) ' ] c  %(S)l. 

Theorem 3.2. With the hypothesis of proposition 3.1 we have the following. 

fields. Denoting this base by P(%(S)'  n %( TQ)FL), we then have 
( i )  There exists a local basis of %(S)' which only contains FL-projectable vector 

FL,P(%(S)'-n%(TQ)FL) =P(%(Ms) 'nX(Mo) ) .  

(ii) There exists a local basis of ker wLs which only contains weakly FL-projectable 
vector fields. Then we have 

ProoJ: ( i )  Consider the quotient manifold Yo= T Q / S ?  and its submanifold Ys = 
S / 9 f  (see figure 1). Since wL is FL projectable, a presymplectic form G L ~ A 2 ( Y o )  
exists such that T ~ G L  = w L .  On the other hand, V g  E %(Yo), 3 X  E %( TQ)/T,,X = 2. 
First, we shall prove that V z  E %(YS)', the corresponding X E %( TQ) belongs to 
%(S)'.  In fact, since T~ is a submersion we have 

2 E %(Ys) 'e f i i ( z )GL = O + O =  T q a i ( 2 ) G L  = j g T $ i ( 2 ) G L  

= j f i ( X ) w L e X  E %(S)I. 

Second, if we denote by T9?  the bundle spanned by the distribution ker FL,, taking 
into account proposition 3.l(i) and remembering that the vector fields of %(S)' and 
%(Ys)' take values on the bundles TS' and mi, respectively, one can prove that 
TSL/ T 9 ;  = TY;. Therefore, Vx E S and V2'(x) E Ys,  we have 

dim T,S = dim TycX)Ys + dim(ker FL,),. 

As a consequence, a local basis of %(S)' is obtained from a corresponding one {z,} 
of E(gPS)', taking a representative X ,  E Z( TQ) of every class ka and adding a local 
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FL 

s\\ 

- ys .f 

Figure 1. 

basis {r,} of ker FL,. Thus the desired local basis is (Xa, r P ) .  Finally, since go and 
gS are diffeomorphisms (figure l ) ,  V z  E Z(Ys)' one has 

f i i ( 2 ) G L  = O ~ O =  9;' * f i i ( 2 ) G L  = g t a z i ( 2 ' > G L  =ji*i(zf>n 
e z ' E  E(M,)I (where 2'1, =jb*B0,g E E( T*Q)IMo) 

and simultaneously Z ' E % ( M ~ )  because it is the image of an FL-projectable vector 
field. In a similar way we can prove that, V Z ' E  Z( M,)' n &(MO),  the vector field 
2 E %(Yo) such that j ~ , 9 0 * ~  = .TIMo belongs to E(Ys)', and this concludes the proof 
of (i). 

( i i)  Taking into account that ker oLs = E(S)' n X(9) and E( TQ, S ) F L  2 
E( TQ)  FL n S( S ) ,  this assertion is a consequence of (i). 

It is well known that, if ( P ,  a) is a symplectic manifold and j : S L, P is a submanifold, 
the canonical isomorphism A : 2'( P )  + A'( P )  allows one to ysociate a vector field 
X, E to every constraint 5 E Co(P, S) as follows: X, E K ' ( d g )  is the solution 
of dg = i(X,)n. Conversely, there exists a local basis of Z(S)'  made up of vector fields 
of this kind. Then, and since X,(f) = {f, 5) (Poisson bracket) V ~ E  h o ( P ) ,  the splitting 
in first and second class constraints [ l ]  $an be realised by studying whether or not 
X, E & ( S )  [15,16]. As a consequence R establishes an analogous correspondence 
between ker os and the set of first class constraints. 

These considerations, together with theorem 3.2, leads us to the following con- 
clusions. 

(i)  Since FL,X E 2'(Ms)' n &(MO),  V X  belonging to the FL-projectable basis of 
%(S)',  we have that FL,X can be associated, by the canonical isomorphism in T*Q, 
with constraints whose Poisson bracket with every primary constraint vanishes on M O .  

(ii) Since FL,X E ker U;,  V X  belonging to the (weakly) FL-projectable basis of 
ker oLs, we have that FL,X can be associated with first class constraints on Ms. 
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(iii) In particular, VX belonging to the FL-projectable basis of ker w L ,  FL,X can 
be associated with first class primary constraints relative to MO and, consequently, the 
second class ones have associated vector fields which do  not have anti-images by FL 
in %( TQ) (since they are not tangent to MO).  

(iv) In addition, V l  E CO( T*Q, M s )  such that X ;  E X ( M o ) ,  we have that FL*l=  x E 

CO( TQ, S )  (modulo primary constraints CO( T*Q, M O ) ) ,  and so 

d x  = dFL*( = FL* d( = FL*i (X; )R  = i ( X  + T ) w L  = i ( X ) w ,  

where X E %( S)'/ FL,X = X i  and r E ker FL, , Thus, an FL-projectable Lagrangian 
constraint can be associated with vector fields of E( TQ) which constitute a local basis 
of %(S)' (although wL is a degenerate form). 

4. On the FL projectability of constraint functions 

i t  is evident that, given an FL-projectable constraint x E CO( TQ, S), a non-FL-project- 
able equivalent constraint can be obtained by multiplying it by some non-FL-project- 
able function f fz A'( TQ)FL.  Nevertheless, there are non-FL-projectable constraints 
such that no FL-projectable equivalent constraint exists (see examples in [lo]). These 
last constraints will be called strictly non-FL-projectable constraints. According to 
theorem 2.3 (i), one can prove that a necessary and sufficient condition for a non- FL- 
projectable constraint x E CO( TQ, S )  to be conversed in an equivalent FL-projectable 
one is that a function f~ A'( TQ) exists such that it is a solution of the system 

fr,(x)+xr,(f! = o  
r u m  = 0 

VT, E ker FL,/T,(x) # 0 

VT, E ker FL, /T , ( x )  = 0. 

The existence of strictly non-FL-projectable constraints is an intrinsic characteristic 
of a submanifold, as we shall prove in this section. The conclusion we will arrive at 
is that the presence of these constraints is equivalent to the fact that the submanifold 
defined by them cuts the foliation S? in such a manner that, on each leaf, it eliminates 
as many degrees of freedom as the number of independent constraints of this kind 
that we have. This assertion is proved in the following way. 

Theorem 4.1. Let (TQ, w,, E , )  be an almost regular Lagrangian system and S- TQ 
a submanifold. Then the number m, of independent strictly non-FL-projectable 
constraints contained in any base of CO( TQ, S )  is equal to 

m ,  = dim(ker FL,) ,  -dim(ker F L * n % ( S ) ) ,  V X €  s 
i.e. the number of independent vector fields of ker FL, which are not tangent to S. 

Boo$ Let m = 2n -dim S (2n = dim TQ = dim T*Q) and m, = dim(ker FL,) , ,  Vx E S.  
Consider the submanifold Ms = FL( S ) .  According to the discussion in paragraph ( b )  
of the appendix, Ms is canonically identified with the quotient manifold S / S : ( S s  
being the foliation induced in S by ker FLs* or, equivalently, the part of ker FL, 
tangent to S: ker FL, n X ( S ) ) .  Therefore, one has 

dim M s  = dim S -dim(ker FL, n 4t"(S)), = 2 n  - m - mo+ m , .  
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On the other hand, denoting by m’ the number of independent secondary constraints 
of CO( T*Q, M s )  and by mo the number of independent primary ones (proposition AI 
in the appendix), we have 

dim Ms = 2 n  - mo- m’ 

and hence m, = m - m‘.  But FL*(Co( T*Q, M , ) )  = 0 and, since FL(S) = M,, m‘ is also 
the number of independent FL-projectable Lagrangian constraints of CO( TQ, S ) .  
Consequently m, is the number of independent strictly non-FL-projectable ones. 

It is clear, after this theorem, that m ,  < m0. Note that in the case when ker FL, n S ( S )  = 
(0) we have CO( TQ, S )  n A’( TQ)FL = 0. 

Another consequence of this theorem is that we can choose a basis of CO( TQ, S ) ,  
(x,, x,.), and a local basis of ker FL, (r,, r,,) ( p  = 1,. . . , m , ,  p ‘ =  1, .  . . , m - m , )  in 
such a manner that 

T , ( X ” )  = 0 r,(X,.) = 0 Vx,, Xw.3  VT, 

r,S(x”) = 0 det(r,,(Xd)), # 0 VX”, xu., Vr,, 
and we assume that the last inequality is verified Vx E S. Therefore, it is evident that 
T, E ker F L , n X ( S ) ,  but r , , E S ( S ) .  Then a relation between the set of first class 
primary constraints (with respect to M,)  and the set of vector fields of ker FL, which 
are not tangent to S can be established. This relation also extends to the set of strictly 
non-FL-projectable constraints (see [7]). 

An immediate corollary of the last proposition is the following theorem. 

Theorem 4.2. With the hypothesis of theorem 4.1, ker FL, c S ( S )  if and only if no 
base of CO( TQ, S )  contains strictly non-FL-projectable constraints. 

The preceding results suggest to us a way of characterising the properties of FL 
projectability of a submanifold S - ,  TQ. We can assign a number to every S, which 
indicates the maximal number of independent FL-projectable constraints of a base of 
CO( TQ, S ) .  According to theorem 4.1, we can define this number geometrically as 

Y = dim TQ - dim S - dim( ker FL, n S( S ) ) ,  

=dim T,(TQ)-dim T,S-dim(ker F L , n X ( S ) ) ,  Vx E s. 
It is obvious that, given two submanifolds S - ,  SI-, TQ, then FL(S) = FL(S’) if 

and only if Y, = Y,. and, if 1 = dim S ’ -  dim S, this is equivalent to demanding that 

1 = dim(ker FL, nS(S‘)),K -dim(ker F L , n S ( S ) ) ,  Vx E s. 

5. FL projectability and the constraint algorithms 

It is well known that, when we ask for the existence of consistent solutions of the 
equations of motion in the case of degenerate Lagrangians (i.e. solutions which are 
tangent to the submanifold where these equations are compatible), in the general case 
a sequence of submanifolds T Q e  S ,  t-‘ S2- . . . t-‘ S, is originated. The submanifold 
S, where this sequence stabilises is called the final constraint submanifold. The same 
occurs in the Hamiltonian formalism: T*Qw Mot-‘ M I +  Mzt-‘ . . . c-’ M, (see 
[ 1,4,6,7]) and, for almost regular Lagrangian systems, one has Mk = FL(S,), Vk.  
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In the Lagrangian formalism we can distinguish two kinds of algorithms: the one 
taking as starting point the dynamical equations (1 )  without any other additional 
condition (called the presymplectic constraint algorithm ( PCA) [3]), and the one which 
takes equations ( 1) together with the condition that their solutions be second-order 
differential equations (SODE) [8], i.e. the Euler-Lagrange equations [7]. In each case, 
the corresponding sequences of submanifolds are not the same. Indeed, in the first 
case we have the following. 

Theorem 5.1. Let (TQ, uL, E L )  be an almost regular Lagrangian system. Then, if 
pk' TQ is a submanifold of the sequence obtained from the PCA we have that 

( i )  there exists a basis of CO( TQ, pk) made up of FL-projectable constraints whose 
FL projection constitutes a basis of C o ( M o ,  M k ) ;  and 

(ii) ker FL,c  9t"(pk). 

Prooj For ( i )  see [4]. For (ii), an explicit proof is given in [5], although in this context 
it is a direct consequence of (i)  and theorem 4.2. 

On the other hand, the submanifolds obtained from the application of the algorithm 
for the Euler-Lagrange equations are locally defined, in general, by FL-projectable 
and strictly non-FL-projectable constraints [7]. Then, for any level k in both algorithms, 
we have Y = Y and therefore FL( pk) = FL( S k )  = M k .  

6 .  Conclusions 

Summing up, the following remarks can be made. 
(i) Starting from the usual concept of projectability by the application FL, a new 

weaker concept can be introduced when submanifolds of TQ and their images under 
FL have been considered. In the same way as the necessary and sufficient condition 
for the FL projectability of vector fields and p-forms is checked by studying their 
behaviour under the action of ker FL,, the necessary and sufficient condition for 
weakly FL projectability is tested by the part of ker FL, which is tangent to the 
corresponding submanifold. 

(ii) Typical vector fields characterising submanifolds of TQ are considered. The 
existence of local bases made up of FL-projectable or weakly FL-projectable vector 
fields (when they are tangent) is proved. 

(iii) The presence of strictly non-FL-projectabie constraints in any basis of 
CO( TQ, S) is associated with the existence of vector fields belonging to the non-tangent 
part of ker FL, . This allows one to label every submanifold with a number intrinsically 
defined, which informs us about the FL projectability of the constraints locally 
defining S. 

(iv) Lagrangian constraint algorithms have been analysed. The relation between 
the existence of strictly non- FL- projectable constraints and the SODE condition becomes 
clear and, hence, it can be concluded that restrictions arising from the dynamical 
consistency of the equations of motion could lead to the elimination of degrees of 
freedom in TQ, but preserving the foliation SI,, whereas restrictions imposed by the 
SODE condition could eliminate degrees of freedom on the leaves of S I  (see [4,6]). 
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Appendix. The distribution ker FL, 

Let us study some properties of the set ker FL,. First, it is interesting to remark that 
ker FL, c 2?( TQ)' (vertical fields of 2?( TQ)).  In particular, ker FL, = 2?( TQ)"n ker oL 

Ker FL, is an  involutive distribution and  hence the Frobenius theorem ensures the 
existence of a regular foliation PL of TQ generated by ker FL, [ 5 ] ,  in such a manner 
that all the points located on the same leaf 2 " ~  PL (and only these ones) have the same 
image under FL, i.e. the fibres FL-'( F L ( x ) ) ,  Vx E TQ, are the leaves of this foliation. 
This means that, given any point X ~ E  TQ, all the points having the same image by FL 
can be reached starting from it through the flux of the vector fields belonging to ker FL,. 

Let Yo = TQ/ 5 L o  be the quotient space. Although the theory of reduction does not 
ensure that it is a manifold, the hypothesis that (TQ, w L ,  E , )  is an  almost regular 
Lagrangian system suffices to claim that Yo is a manifold [SI and that the projection 
T~ : TQ -$ .!Yo is a submersion. Therefore, Yo and MO can be canonically identified by 
means of a diffeomorphism go: Yo+ MO (see figure 1). Then we have the following. 

r 4 , a  

Proposition Al .  The number of independent vector fields of ker FL,  is equal to 
2n -dim MO (the number of independent primary constraints). 

Proof. Immediate, because dim MO = dim TQ -dim(ker FL,),, V x  E TQ. 

Let j s  : S -  TQ be a submanifold and M s  = F L ( S )  with the embedding j s . :  M s -  T*Q. 
Let us introduce the map FLs : S +  M,, implicitly defined by FLojs = jkoFLs, which is 
a submersion if FL is. We will distinguish two cases. 

( a )  ker FL, n E ( S )  = ker FL,. Since ker FL, is an involutive distribution, we can 
state that ker FL,ls gives rise to a regular foliation 9'; of S. Then the vector fields 
Ts E 2'(S)/jS.Js = TI, E ker FL,ls are the elements of ker FL,, . The quotient space 
Ys = S / 5 ;  is a submanifold of Yo,  whose structure is inherited from the one of Yo 
[SI. It is isomorphically equivalent to Ms (see figure 1) and the projection g : S +  Y,  
is a submersion. This means that S is made up of the union of a subset of complete 
leaves of the foliation 5; of TQ. Furthermore, all the points of S located on the same 
leaf 2' E 9; (and only these ones) have the same image by FL (or  FL,). 

( b )  ker FL, n E(S) # ker FL,. With dim(ker FL, nb(S))x = m,, Vx E TQ. In 
this case, ker FL, is made up  of two kinds of fields: T E S ( S )  and T'aX(S). Thus 
we have the following. 

Proposition A2. The set {Ts} c 2?(S) / jSJs = TIs, VT E ker FL,  n%(S), makes up  
ker FL,,. Consequently, ker FLs, is an involutive distribution. 

Proof. Consider an  extension ker FLs, c 2?( TQ) of ker FL,, . Then VT E ker FLs,, 
3 ! Ts E ker FL,*/js,Ts = TI,, and  

FL,Tls = FL, j S J ,  = j $ ,  FL,,T, = 0 VTl, E ker FL,,. 
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Conversely, VTe ker FL, n S ( S ) ,  3!TS E %(S)/j,,T, = TIs and so 

0 = FL,Tls = FL, jsJ, = j & F L , , T , e  F L J ,  = 0 

whence we conclude js,(ker FL,,) = (ker FL, n X ( S ) ) l s .  

VTs E ker FLs* 

We realise that S is not made up of a subset of complete leaves of 9: (as in the 
present case) but if we denote by 2" the leaves of the foliation 9s induced by ker FL,, 
in S, we have LEs = Yon S. Here {Yo} is a subset of leaves of 9; whose union is a 
submanifold P -  TQ having the properties S - P and M ,  = FL( S )  = FL( P ) .  Once 
again, only the points of S located on the same leaf have the same image by FL (or 
FL,). The quotient space S /  9s = 9, is a submanifold of 9, isomorphically equivalent 
to  M,, and the projection : S + 9, is a submersion (see figure 1). 
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